Skip to content
Oakfield Operator Calculus Function Reference Site

Polar-Cartesian Transforms

For a complex number z=x+iyz = x + iy, the polar coordinates (r,θ)(r,\theta) are

r=x2+y2,θ=atan2(y,x),z=reiθr = \sqrt{x^2 + y^2}, \qquad \theta = \operatorname{atan2}(y,x), \qquad z = r e^{i\theta}

Conversely, given (r,θ)(r,\theta),

x=rcosθ,y=rsinθx = r\cos\theta, \qquad y = r\sin\theta

The polar coordinates match the canonical magnitude and phase:

r=z,θ=Arg(z)r = |z|, \qquad \theta = \operatorname{Arg}(z)

For the map (r,θ)(x,y)(r,\theta)\mapsto(x,y) with x=rcosθx=r\cos\theta, y=rsinθy=r\sin\theta, the Jacobian determinant is

(x,y)(r,θ)=r\left|\frac{\partial(x,y)}{\partial(r,\theta)}\right| = r

Angles differing by 2πk2\pi k (with kZk\in\mathbb{Z}) represent the same point: (r,θ)(r,θ+2πk)(r,\theta)\sim(r,\theta+2\pi k).


At r=0r=0, the phase is undefined; away from the origin the transform is smooth. For purely real z>0z>0, θ=0\theta=0; for purely imaginary z=iyz=iy with y>0y>0, θ=π2\theta=\tfrac{\pi}{2}.




  1. 📜 Geometry of Complex Numbers

    Polar coordinates for complex numbers follow from the geometric interpretation of CR2\mathbb{C}\cong\mathbb{R}^2, enabling a clean separation into radius and angle.

  2. 🌍 Modern Perspective

    In numerical workflows, polar–Cartesian transforms are used to apply operations that act naturally on amplitude or phase while preserving the underlying complex structure.


  • Ahlfors, Complex Analysis
  • Needham, Visual Complex Analysis