Skip to content
Oakfield Operator Calculus Function Reference Site

Complex Multiplication and Division

Write zj=rjeiθjz_j = r_j e^{i\theta_j} with rj0r_j \ge 0 and θjR\theta_j \in \mathbb{R}. Then

z1z2=r1r2ei(θ1+θ2)z_1 z_2 = r_1 r_2 e^{i(\theta_1 + \theta_2)}
z1z2=r1r2ei(θ1θ2),z20\frac{z_1}{z_2} = \frac{r_1}{r_2} e^{i(\theta_1 - \theta_2)}, \qquad z_2 \ne 0

In polar form, multiplication multiplies magnitudes and adds phases; division divides magnitudes and subtracts phases (modulo 2π2\pi):

z1z2=z1z2,Arg(z1z2)Arg(z1)+Arg(z2)(mod2π)|z_1 z_2| = |z_1|\,|z_2|, \qquad \operatorname{Arg}(z_1 z_2) \equiv \operatorname{Arg}(z_1) + \operatorname{Arg}(z_2) \pmod{2\pi}

Complex multiplication is distributive over addition:

z(a+b)=za+zbz(a+b) = za + zb
z1z2=z1z2,z1z2=z1z2\overline{z_1 z_2} = \overline{z_1}\,\overline{z_2}, \qquad \overline{\frac{z_1}{z_2}} = \frac{\overline{z_1}}{\overline{z_2}}

Division by zero is undefined. For purely real numbers, the formulas reduce to real multiplication/division with phase restricted to 00 or π\pi (principal value).




  1. 📜 Geometric Interpretation

    Once complex numbers are identified with planar vectors, multiplication corresponds to a combined scaling and rotation; this viewpoint explains why polar coordinates make multiplication and division particularly transparent.

  2. 🌍 Modern Perspective

    Polar-form composition remains central in signal processing and spectral methods, where gain and phase are manipulated directly.


  • Needham, Visual Complex Analysis
  • Ahlfors, Complex Analysis