Skip to content
Oakfield Operator Calculus Function Reference Site

Hyperexponential Derivatives

With ϕ(λ,ε;K)=λ[ψ(λ+ε+K)ψ(λ+ε)]\phi(\lambda,\varepsilon;K) = \lambda[\psi(\lambda+\varepsilon+K) - \psi(\lambda+\varepsilon)], derivatives are

λϕ=ψ(λ+ε+K)ψ(λ+ε)+λ[ψ1(λ+ε+K)ψ1(λ+ε)]\partial_{\lambda}\phi = \psi(\lambda+\varepsilon+K) - \psi(\lambda+\varepsilon) + \lambda\big[\psi_{1}(\lambda+\varepsilon+K) - \psi_{1}(\lambda+\varepsilon)\big]
εϕ=λ[ψ1(λ+ε+K)ψ1(λ+ε)]\partial_{\varepsilon}\phi = \lambda\big[\psi_{1}(\lambda+\varepsilon+K) - \psi_{1}(\lambda+\varepsilon)\big]

where ψ1\psi_{1} is the trigamma function.

Defined for λ,ε>0\lambda,\varepsilon > 0 and integer K1K \ge 1 (extendable to complex parameters away from polygamma poles). Outputs are real for real inputs.


Smooth in parameters; λϕ>0\partial_{\lambda}\phi > 0 and εϕ<0\partial_{\varepsilon}\phi < 0 for positive arguments since ψ1>0\psi_{1}>0 on (0,)(0,\infty). Higher derivatives involve higher-order polygammas.


As λ0+\lambda \to 0^{+}, λϕψ(ε+K)ψ(ε)\partial_{\lambda}\phi \to \psi(\varepsilon+K) - \psi(\varepsilon). For large λ\lambda (with fixed KK), one has λϕ=O(K2/λ2)\partial_{\lambda}\phi=\mathcal{O}(K^{2}/\lambda^{2}) and εϕ=O(K/λ)\partial_{\varepsilon}\phi=\mathcal{O}(K/\lambda).


Polygammas provide the necessary derivatives; warp gradients propagate these sensitivities through spatial mappings.


Oakfield uses hyperexponential derivatives to support warp dynamics and parameter sensitivity:

  • Warp gradients: core/operators/analytic_warp.c calls sim_hyperexp_phi_deriv_safe() (and sim_qhyperexp_phi_deriv() for QHYPEREXP) from core/math/hyperexponential.* to compute a stable local gradient.
  • Complex support exists via complex-valued derivative helpers (e.g. sim_hyperexp_phi_deriv_complex_opt) for complex-field experimentation.
  • Error handling: the “safe” APIs return diagnostic reports and route invalid inputs through fallback handlers (important near poles and branch issues).

These derivatives are an Oakfield-specific companion to the hyperexponential warp, written in terms of classical polygamma functions to enable stable analytic gradients.


  • NIST Digital Library of Mathematical Functions (DLMF), §5.15